Preprint Announcement – Guide to Regulating Medical AI

One year ago, I left the start-up where I had been working on an AI-driven companion to accompany patients through their cancer treatments.

When I left, I was deeply frustrated with the start-up environment surrounding AI in Healthcare. I was still convinced that AI could help in this space, but all I was seeing was teams going down what I considered to be the wrong paths.

Continue reading “Preprint Announcement – Guide to Regulating Medical AI”

Modelling the Modeller

Something I’ve struggled with on and off over the 20 years that I have been making mathematical models is explaining those models to others. I have tried to bring people along and develop their understanding. But mainly what I observed was that, some people just got it and others did not.

I have certainly improved my own skill at explaining. This comes down to having streamlined stories and simpler take-home messages. Telling a clearer story certainly improves my audiences’ self-satisfaction, but ultimately some of them get the whole message and others do not.

Continue reading “Modelling the Modeller”

Predictive Models

I have mentioned, in the past, that I am a huge fan of Nate Silver. Something which he used to repeat quite frequently, on their podcast, is a sort of predictive modelling tautology:

The best prediction of the future is no change.

Nate Silver [Paraphrasing]

This concept has even got a probabilistic and philosophical theory behind it. All other things being equal, over the long history of time, the next moment from now is not likely to be any different from right now. If we repeat this process often enough then we will be right more often than we are wrong. In essence, we are accepting that there is continuity (and perhaps causality) in our experience of the natural world. Political scientist David Runciman even explored the concept in his recent work of political theory.

I originally took this statement in the manner in which, I hope, it was intended. But behind every great phrase there is often an enticing problem. Thinking over this phrase has led me to realise that there are three basic types of predictive models and each one of them has a fundamentally different purpose and indeed parameterisation.

Continue reading “Predictive Models”

Narrative and Decision Models

Since I managed to break my writers’ block on decision making models last week I want to follow-up with a brief discussion on the use of Narrative in presenting decision models to an audience.

In my first article on decision making models I emphasized that a model must serve a purpose. In explaining our models to others I want to highlight that there are two purposes behind explaining a model; the first is to convince the audience; the second is to convey insights into the model. This is the opposite ordering of how scientifically-trained modellers typically think about communicating results, but it is by far-and-away the prioritisation of most top scientific communicators around the world.

Continue reading “Narrative and Decision Models”

Decision Making Using Models 3.0

This is my third attempt, over the course of 9 months, to write this article. The first attempt foundered on my desire to go into detail on whether explanation or explanability is a good characteristic of a model or not. I confess, this was overly motivated by my personal frustration at having worked with somebody who, “never let the facts get in the way of a good story.” The second attempt got lost in a forest of anecdotes from previous projects. I was trying so hard to knit them together that I failed to make a point. Today, I want to focus on the single most important thing that I have learned about developing decision making models.

Continue reading “Decision Making Using Models 3.0”

Data Science in Biomedical Industry

I am asked quite often how I see Data Science in the biomedical industry. I have, of course, many answers each of which is context dependent. However one theme which I find frequently recurring is a sort of straw-man debate which seems to inherently attract technical practitioners.

The debate is usually structured as follows:
How do you see the validation of medical AI products working in practice?
Answer: clinical trials, test-validation sets, blah, blah
But doesn’t this lead to enormous overheads?
Answer: yes, but there are shortcuts
But if you take these shortcuts then don’t you run the risk of running into costly failures when you finally run the clinical trials?
It goes on….

Continue reading “Data Science in Biomedical Industry”

ML Embeddings and the Neuronal Code

I had the opportunity to talk recently with a relatively advanced researcher in machine learning methods. The conversation turned briefly to the study of embeddings when he mentioned that most of his work involves things that can be embedded in Euclidean space. Since I’ve been spending a bit of time thinking about embeddings recently, I asked him some questions to get the official ML take on the subject. I was resonably gratified to learn that – although most ML engineers don’t think much about embeddings – the research on this topic considers the embedding to be tightly bound to the network architecture. It is not possible to study abstract embeddings, divorced from applications. I fully agree with this point-of-view.

Continue reading “ML Embeddings and the Neuronal Code”