A good entrepreneur has a canny intuition for their True North. I’ve heard this from many good investors.
Personally I’ve always believed it. One of the bases through which I judge my professional contacts is on their decision making ability. Some people seem to always make good choices. Others, faced only with good outcomes, somehow still manage to find a more painful outcome.
I had the opportunity to talk recently with a relatively advanced researcher in machine learning methods. The conversation turned briefly to the study of embeddings when he mentioned that most of his work involves things that can be embedded in Euclidean space. Since I’ve been spending a bit of time thinking about embeddings recently, I asked him some questions to get the official ML take on the subject. I was resonably gratified to learn that – although most ML engineers don’t think much about embeddings – the research on this topic considers the embedding to be tightly bound to the network architecture. It is not possible to study abstract embeddings, divorced from applications. I fully agree with this point-of-view.
Randomised controlled trials (RCTs) have been the gold standard for statistical evidence, of treatment effect, for over 100 years. Their strength is in their attempt to avoid major sources of bias in a comparison of the evidence. However, they are costly to run, particularly in the domain of personalised medicine, to which medical AI products typically belong.
I have a short thought, stemming from a combination of projects that I’m working on at the moment, and I want to share it.
The current trend towards Causality in AI is very attractive to people like me. It matches our personal biases and views of the world. However, it is lacking a natural heuristic. How do we decide how much resources to devote to alternative models of the world, as we gather evidence as to their accuracy?
Like I say, I have a number of parallel projects, many of which address exactly this question on technical and biological levels.
There is something from the world of business, studying entrepreneurship, which might be a better heuristic than any normative model I can come up with. Effectual entrepreneurship is a perspective on entrepreneurship, studying highly successful repeat entrepreneurs (eg. Elon Musk), which establishes control, rather than planning, at the core of entrepreneurial activities.